

An Illustrated Guide to COMMUNITY ENERGY

Exploring the sustainable energy potential of your neighbourhood

www.guidetocommunityenergy.com

FINAL VERSION | May 2013

Reference:

Barron, S, TR Tooke, S Cote, SRJ Sheppard, R Kellett, K Zhang, L Holy, M Sherriff, M vanderLaan (2013). An Illustrated Guide to Community Energy. The Collaborative for Advanced Landscape Planning (CALP).

Project team:

Sara Barron Thoreau Rory Tooke Shirlene Cote Stephen Sheppard Lukas Holy

Reviewed by: Richmond Citizens & Staff

Mustafa Abdrahman laana Biork Ted Brabander Sek Cheung | P.Eng Reena Clarkson | Event Manager & Co-Founder: Tree of Life Events Colin Dring | Executive Director; Richmond Food Security Society Hamid Ghanbari | B.Arch, M.Eng, PhD, Senior Project Manager; IRC Building Sciences Group Winnie Hwo | Campaigner; David Suzuki Foundation Eldon Lin | Grade 12 Student Danica Llaneta | Grade 12 Student lan Tom | 1st year UBC Student

Cecilia Achiam | Interim Director; Sustainability & District Energy, City of Richmond Courtney Miller | Sustainability Project Manager, City of Richmond

Funded by:

Ronald Kellett Kevin Jingyi Zhang Mesa Sherriff Mike van der Laan

Surrey Citizens & Staff

Rex Eaton | Community Representatiove; West Clayton Citizen's Advisory Committee June Liu | Grade 12 Student Erina Park | Grade 11 Student Grant Rice Ms. Sukhvinder Kaur Vinning | Executive Director; World Sikh Organization of Canada Jessica Wang | Grade 11 Student

Don Luymes | Manager; Community Planning, City of Surrey Waleed Giratalla | Community Energy Planner; City of Surrey Jason Owen | Renewable Energy Engineer; City of Surrey

vancouver

foundation

Metro Vancouver Staff

Jason Emmert | Air Quality Planner Tom Pearce | Regional Planner

Other Reviewers

Pacific Institute for Climate Solutions

Paul Bouman | Key Account Manager; BC Hydro Patrick Condon | Professor; Landscape Architecture, UBC Dale Litteljohn | Executive Director; Community Energy Association Ellen Pond | Senior Technical and Polcy Advisor; Sustainable Communities, Pembina Institute Ted Sheldon | Special Advisor; Climate Action Secretariate, Province of British Columbia Regional Engineers Advisory Council, Climate Protection Subgroup, Metro Vancouver

With additional support from:

metro

An Illustrated Guide to Community Energy

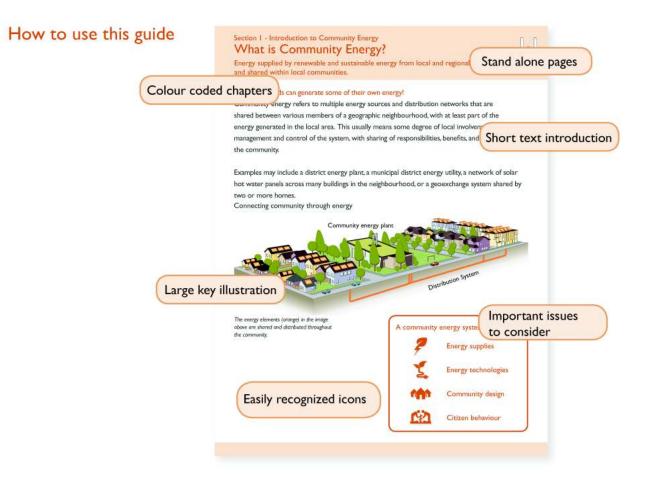
With clear and compelling visuals of Metro Vancouver case studies, and new information on regional and local energy resources, this Guide aims to inform citizens about unfamiliar energy options, and stimulate discussion about the energy choices that each community will face.

Orange elements in the image above generate energy to heat and power the community. A community energy centre (at the right) is powered by a renewable energy source.

Imagine a neighbourhood where our homes generate energy and excess energy is shared with the community or is sold to the grid as a source of revenue.

What if Metro Vancouver used sustainable regional renewable energy resources instead of fossil fuels that contribute to global warming?

Imagine neighbours working together to share skills, improve energy efficiency, & reduce energy costs through neighbourhood retrofits.


This guide shows how local involvement in community energy systems can promote more sustainable and secure energy futures, while reducing carbon emissions that contribute to global warming. The guide explains the idea of community energy, which is becoming an important topic for every municipality in British Columbia. Change is coming to neighbourhoods as municipalities try to reduce community-wide carbon footprints and manage rising energy prices, while maintaining their citizens' quality of life.

⁰ Why Do We Need an Illustrated Guide?

- 1. So citizens can develop more informed opinions on possible energy transformations in our neighbourhoods.
- 2. For practitioners and community groups to use in their public engagement activities.

Table of Contents

Chapter One	Introduction to Community Energy
Chapter Two	Basic Concepts - A Visual Glossary
Chapter Three	Regional Renewable Energy Resources
Chapter Four	Richmond Case Study: Urban Neighbourhood Energy Scenarios
Chapter Five	Surrey Case Study: Suburban Block Energy Scenarios
Conclusion	Links and Resources; Conclusion and Next Steps
Appendices	Clean Technologies List; Glossary; Sources

Section 1 - Introduction to Community Energy

What is Community Energy?

Energy supplied by renewable and sustainable energy from local and regional sources and shared within local communities.

Neighbourhoods can generate energy.

Community energy refers to multiple energy sources and distribution networks that are shared between various members of a geographic neighbourhood, with at least part of the energy generated in the local area. This usually means some degree of local involvement in the management and control of the system, with sharing of responsibilities, benefits, and impacts among the community.

Examples may include:

- a district energy plant run by a local utility, municipality or citizen co-operative
- a network of solar hot water panels installed on many buildings in the neighbourhood
- a geoexchange system shared by a few homes

The energy elements (orange) in the image above are shared and distributed throughout the community..



Transportation uses a significant amount of energy, and contributes over half of our regional greenhouse gas emissions. Transportation is not the focus of this guide, but should be integrated into community energy planning and engagement.

$[]_{\circ}2$ Layers of Community

Community Energy applies to a range of scales, from a small collection of houses, to a region providing local renewable energy resources.

This guide focuses on the region, neighbourhood, & block scales.

Neighbourhood

Site

Source: adapted from Community Energy Planning 'a tool to combat climate change,' presentation by Paul Bouman, BC Hydro

Opportunities to Save Energy Cost of Saving Energy

Traditional

Building

Retrofits

Building

Why is scale important? Transmission Losses **Energy Security** Environmental Accountability

Region

Local Economy

A community energy system based on renewables can be less vulnerable to global energy markets, because after the initial investment operation costs remain generally low.

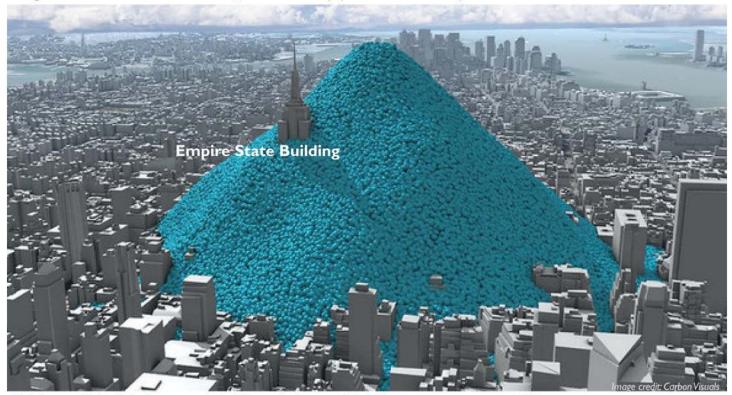
Projected increase in household energy costs by 2020.

Citzens of Surrey could collectively spend more than \$1.3 billion on household energy by the 2020.

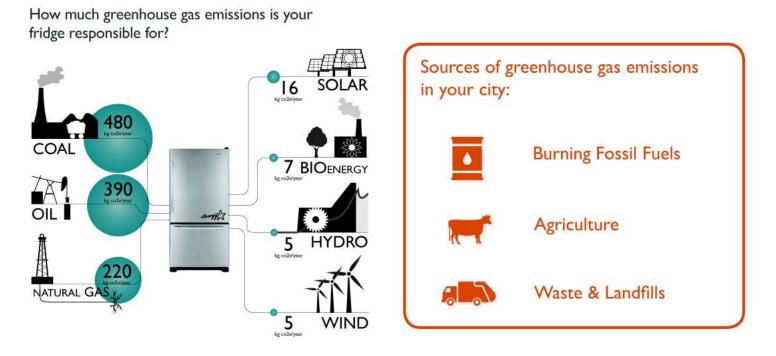
What if this money stayed in the community?

One dollar spent locally

economic benefits 2-5 times the original amount.

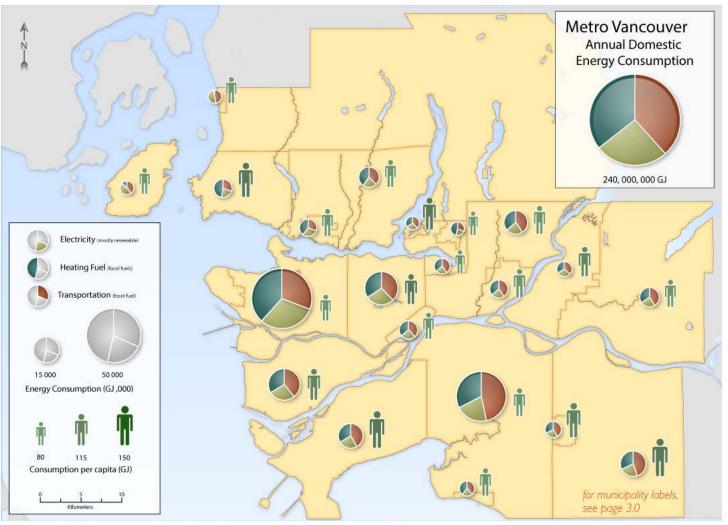

Source: communityenergy.org

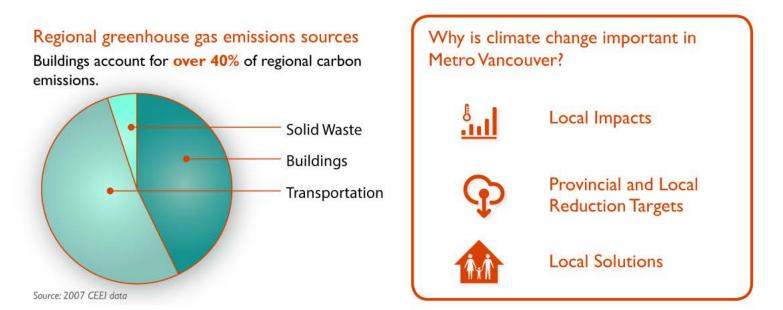
Climate Change


Fossil-fuel energy resources release greenhouse gases that cause global warming and endanger current and future generations.

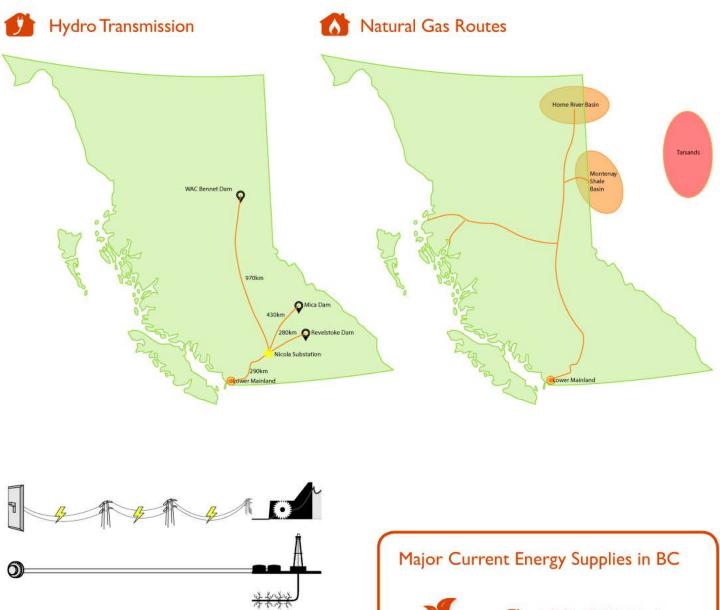
Imagine if we could see the CO_2 a community produces in a day.

This image of New York shows one day's CO, production - each bubble represents one tonne of CO,

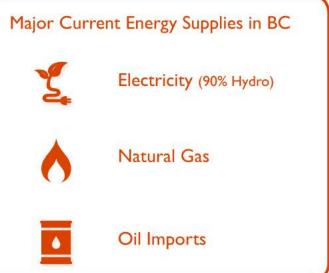

We can work together to mitigate climate change by making more efficient use of community energy and switching to renewable sources to reduce carbon emissions. Most municipalities in BC have pledged to reduce their community-wide carbon footprints by up to 80% by 2050.


How Does our Region Use Energy?

Communities across the region use different total amounts of energy for electricity, heating, and transportation. We also consume different amounts of energy per person across the region. How much do you use?



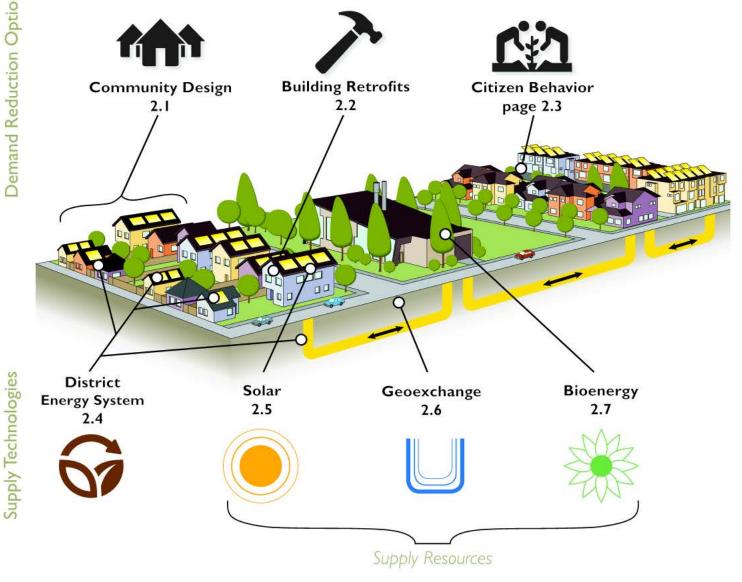
Municipalities with higher density and lower vehicle use tend to use less energy per person.


Where does Energy Come from in BC?

Much of the energy currently used in Metro Vancouver homes comes from remote suppliers in BC and Alberta, at least 400-1000 kilometers away.

These long distance transmission lines and pipelines are vulnerable to losses, leaks, and disruptions that can be exacerbated from worsening climate change related events. Hydro-electricity is a renewable, low carbon energy source, but oil and gas are not.

Metro Vancouver is also crossed by railways & pipelines shipping coal & oil for export to other countries, & bringing oilsands oil for use in our vehicles.



Section 2 - Basic Concepts - A Visual Glossary

Components of a Community Energy System:

Demand Reduction Options

Note: This section includes an overview of key renewable energy supplies, see AI for a comprehensive list of technologies.

Residential Energy Demand

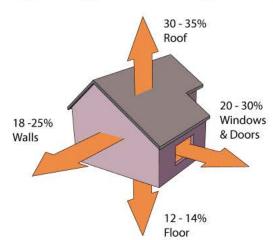
People use energy to provide services such as lighting, heat, cooling, and refrigeration. The energy services demanded in a typical household are shown below.

A typical household in Metro Vancouver requires about 60 megawatt hours of energy each year (electricity & thermal)

A typical household comprises 2.8 people and a floor area of 288 m² (>3,000 ft²)

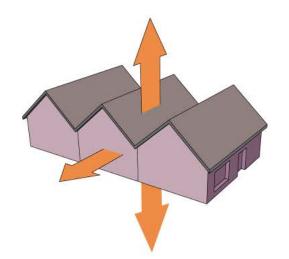
78% of thermal energy is used to heat space

22% of thermal energy is used to heat water

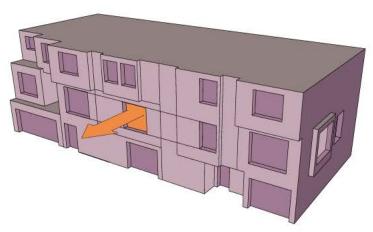


Electricity is used to power appliances, lights and devices such as electronics

Conserving heat in our communities depends on design factors such as building density, building size, orientation, and amount of windows.


Reducing Energy Loss Through Shared Walls

Detached buildings


- Often one family in a large space
- Many exposed walls (large surface area)

2.1

Attached buildings

- More shared walls
- Multiple families sharing heat
- Compact surface area

2. b Community Design Case Studies

Sketch of what the City of North Vancouver could look like in 100 years with greatly reduced greenhouse gas emissions.

Workshop participants discuss future visions for the city.

City of North Vancouver 100 Year Vision

The City of North Vancouver and the University of British Columbia Design Centre for Sustainability (UBC-DCS) teamed up to prepare a 100 Year Sustainability Vision for the City.

The plan looks at challenges and opportunities for promoting sustainable future development. This longrange vision aims to guide the City's community design toward carbon-neutral status by 2107, the City's 200th anniversary.

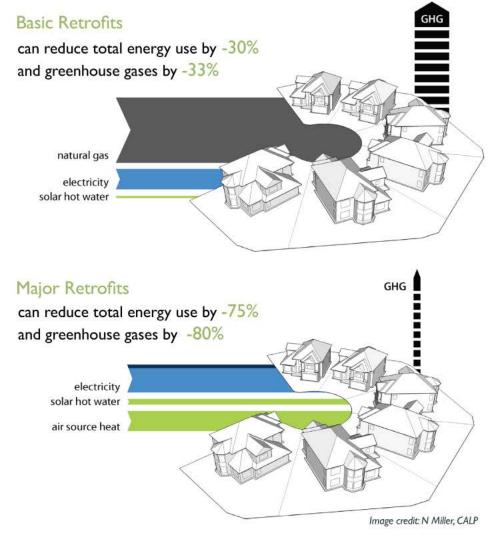
The visioning process addressed community design issues such as:

- · compact, complete neighbourhoods
- 5 minute walking distances
- · location of district energy plants
- mixed residential and commercial uses
- jobs/housing balance
- per capita carbon emissions

Learn more: cnv.org/server.aspx?c=3&i=541

Increased density has many benefits. For example, more people have access to transit, live in attached buildings with shared walls and district energy systems become more cost effective.

Smaller dwelling units generally use less energy to heat and operate.



With increased density, more people can live close to transit, which in turn supports increased transit options and availability.

The way we design our landscape can affect the energy performance of our buildings. For example, trees along the south facade of a house can help cool buildings in the summer. Retrofits

luch energy can be saved by bringing existing buildings up to new, more efficient andards.

Most of the buildings that will be here in 2050 already exist.

All information on this page is from the following report: http://calp.forestry.ubc.ca/files/2010/02/CALP_REIBC_Retrofit-Challenge_Final_Report.pdf Authors: Ellen Pond, Duncan Cavens, Nicole Miller, and Stephen Sheppard

Key strategies used to achieve energy reductions

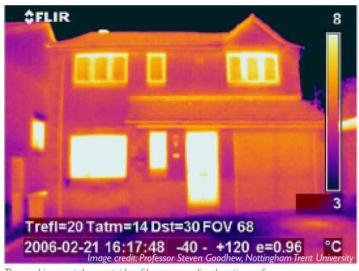
- increase insulation
- reduce air infiltration
- upgrade furnace
- switch to solar or on-demand hot water

22

- energy efficient appliances
- compact fluorescent/LED lighting

Key strategies used to achieve energy reductions

- major insulation increase
- · heat recovery ventilator
- window upgrades
- upgrade to super high efficiency furnace or heat pump
- solar hot water or an ondemand system
- energy efficient appliances
- compact fluorescent lighting



Retrofits

Case Studies

Residences on Eagle Island

Thermal image taken outside of home revealing locations of heat loss in the home.

Retrofits come at a range of costs, from a few hundred dollars for basic retrofits such as increasing insulation, to thousands of dollars for major retrofits, such as upgrading windows.Various rebate schemes are available to reduce costs.

Some retrofits do not require major changes to buildings, while others require modifications to the building walls and roof structure.

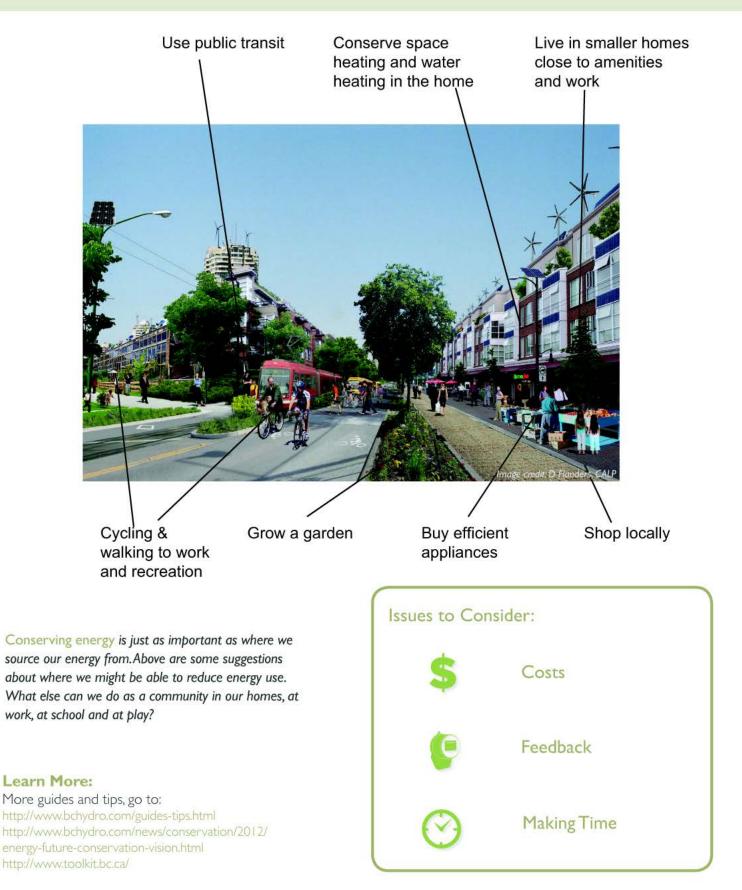
Eagle Island Community Retrofit Project

is an example of how action on climate change can become more achievable and scale up when conducted at the neighbourhood level. Eagle Island is a community of 30 homes, located within the District of West Vancouver. A community champion led the neighbourhood through a retrofitting process, encouraging every neighbour to undergo a home energy audit, and then follow through with making their homes more energy efficient through such measures as adding better insulation, updating furnaces and draft proofing.

By making the activities fun (hosting parties and dinner meetings), using thermal imaging in the audit, and working as a group rather than as individuals, the residents of Eagle Island managed to increase the efficiency of 26 homes on the island. Spill-over from this initiative has residents considering more options for reducing their carbon footprint, such as switching from diesel-power to electric boats (main method of transportation to the island). The success of this initiative was supported by the District of West Vancouver & local businesses, and has grown into the "Cool Neighbourhoods" movement, carrying out similar programs in other North Shore communities (notably Blueridge and Horseshoe Bay).

Learn more:

mc-3.ca/eagle-island http://www.townsfortomorrow.gov.bc.ca/ Pacific Institute for Climate Solutions White Paper on Thermal Imaging, (Cote et al., 2013)



While all retrofits will make the building more livable, construction during retrofitting impacts building residents and neighbours.

It helps to see other neighbours retrofitting their properties and to share expertise, tools, & materials. Some neighbourhoods form "buyers clubs" to negotiate bulk discounts from local building suppliers

Citizen Behaviour Case Studies

REaDY Summit at Steveston-London Secondary School April 2012

Logo designed by students for the summit.

Richmond Earth Day Youth Summit (REaDY)

On April 21st 2012, the Richmond Student Green Teams, with support from the School Board and Richmond City staff, led and facilitated the Richmond Earth Day Youth Summit (REaDY) at Steveston-London Secondary School. Winnie Hwo of the David Suzuki Foundation writes, "[it]...was more than just a way to celebrate the 42nd Earth Day, it was also a time for REaDY Summit participants to learn and talk about what the future holds for our environment. Their conclusion — the Earth is in worse shape today than 42 years ago and the time to take action is now!"

This collaboration between youth, NGO and municipal representatives reveals the importance of working together as a community towards raising support, momentum and awareness for sustainability issues. For example, lan Bruce, of the DSF's Climate Change and Clean Energy Team led a group visioning session about what a sustainable neighbourhood and transportation future might encompass.

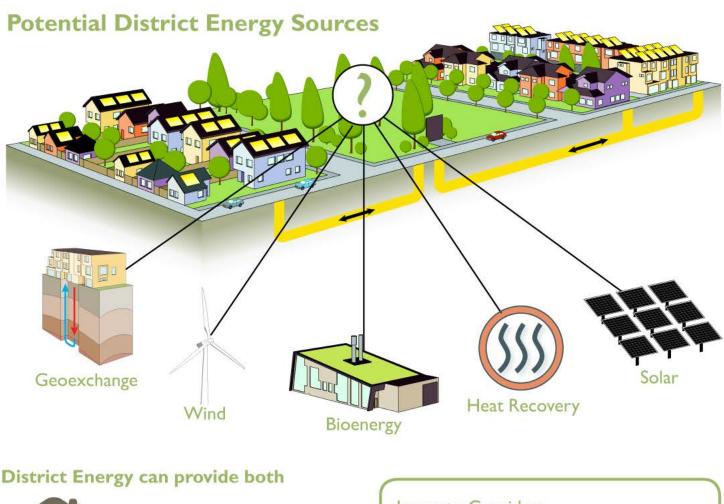
Learn More:

davidsuzuki.org/blogs/climate-blog/2012/02/richmond-earthday-youth-summit-2012/

According to BC Hydro, energy efficiency and conservation measures cost as little as one-fifth to one-eighth the cost of other new clean resource options, on average.

When people can actually see the energy they are using, they tend to use less. Easy to see monitoring displays help people understand how they are using energy, enabling them to make decisions on how to conserve. Making Time

Creativity is needed for scheduling time together with busy members of the family & neighbourhood to discuss how they can conserve energy and reduce carbon footprints ... try combining the energy saving conversations with other fun social activities



District Energy Systems

2.4

A district energy system generates heat and sometimes electricity for distribution to local users (homes and businesses).

District energy is more energy efficient than using individual building furnaces for neighbourhood with adequate density, and therefore reduces greenhouse gas emissions, especially when using renewable supplies.

District Energy uses piping or a micro grid to distribute heat or power from a central neighbourhood plant or dispersed network. A micro grid is a local system of electricity generation, energy storage, and users that is also connected to the traditional large-scale grid.

District Energy Systems Case Study

Drake Landing Solar Community

is a 52-house neighbourhood in Okotoks, Alberta. It is heated by a district system designed to store solar energy underground during the summer months and distribute the energy to each home for space and water heating needs during winter months. Solar energy is captured all year by an 800-panel garage mounted array.

The system fulfils 90% of each home's space heating requirements from solar energy, which means they rely much less on fossil fuels. The reduction in greenhouse gas (GHG) emissions has been calculated to be approximately 5 tonnes per home per year.

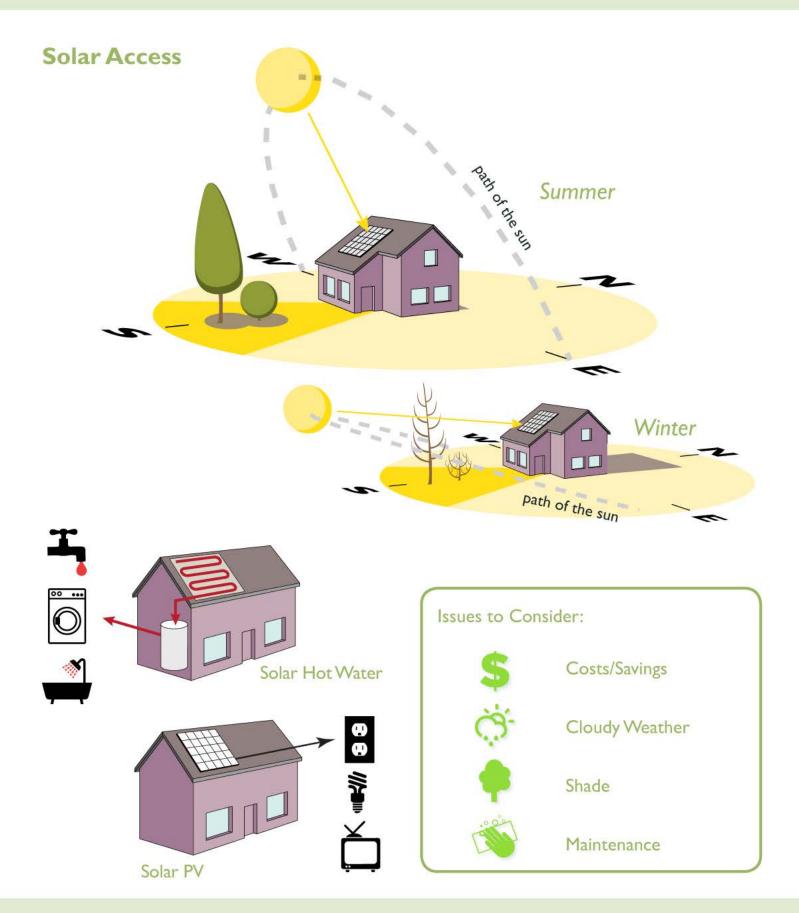
District Energy Systems range in size from serving a single apartment complex or multiple single family homes, to serving a whole neighbourhood (such as the Lonsdale Energy Corporation in the City of North Vancouver).

Learn more: dlsc.ca/

Citizens are often concerned with how a new District Energy plant or rooftop facilities will look in their neighbourhood. Many local examples show that good design can result in a community feature, rather than an eyesore.

Air pollution from some renewable fuel supplies can be of concern to local residents. Strict industry standards & regional restrictions are in place to ensure that air pollution & reduced visibility is not a major issue.

Perceived health effects from air pollution, noise, night lighting, or other irritants can be reduced through good design, but should be monitored. Educational campaigns about these issues should be implemented when District Energy is proposed.


District Energy systems come in a range of costs. Much of the costs are upfront costs for new buildings and infrastructure. Actual energy supply costs are often low. Some cities are building District Energy utilities to provide long-term revenue.

What Is Solar Energy?

Solar (energy from the sun) can provide energy to buildings using proven systems such as Solar Photovoltaic (PV) and Solar Thermal Energy.

2.5

Solar Energy

Case Studies

Sum-SHA-Thut, Sooke, British Columbia

The T'Sou-ke Nation is a small First Nation community located on the very southern tip of Vancouver Island. The community has completed a 75-kilowatt solar power installation, which is the largest in B.C. to date. The project is called Sum-SHA-Thut, the Sencoten term for "sunshine".

The T'Sou-ke solar power installation generates electricity from photovoltaic panels. They have also installed solar thermal panels on 37 (out of 86) homes to pre-heat hot water, further reducing energy consumption and their carbon emissions.

Learn more:

greenmuze.com/climate/energy/1315-tsou-ke-nation-solar-project-. html turtleisland.org

See also:

District of North Vancouver Solar Calculator http://geoweb.dnv.org/applications/solarapp/

SolarBC http://www.solarbc.ca/

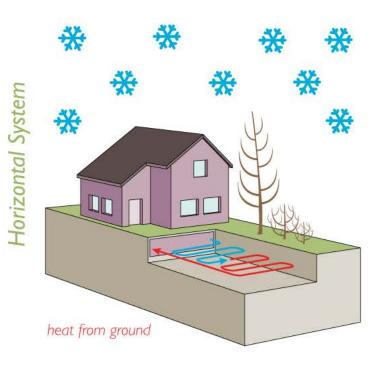
Costs per kilowatt hour range from: 11-23¢ for a solar farm, 19-38¢ for rooftop hot water,

30-45¢ for rooftop photovoltaic

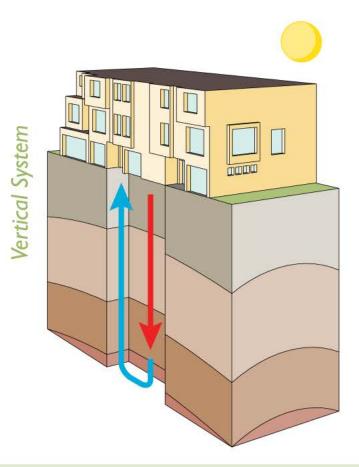
Current BC Hydro prices are about 7¢ per kWh.

The energy produced by a solar panel changes throughout the day and year depending on sun angles and cloud cover. A large uptake of solar technologies would require careful management of the energy system.

Shade from trees and buildings will affect the energy produced from a solar panel. To ensure the maximum energy output of a solar installation some jurisdictions in California have laws that prohibit shading of neighbouring solar panels.


Solar panels require some maintenance for removing dust and snow. If the panels are not maintained, the energy output of the technologies can be reduced and economic viability can be compromised.

What Is Geoexchange?


2.6

Geoexchange takes advantage of the relatively stable temperature just below ground to provide heating or cooling in buildings using similar technology as your refrigerator.

Heat in Winter, Cool in Summer

Horizontal vs. Vertical systems

Pipes can be laid horizontally (above) to provide heating/cooling to homes with space around them, or can be drilled vertically into the ground (below), where space is more limited. Note that geoexchange requires electricity to work.

Issues to consider:	
\$	Costs/Savings
	Scale
~	Retrofits

What Is Geoexchange?

Case Studies

Interior of Energy Centre building

Laying the pipes in the ground

Vertical systems are more expensive, but can become cost effective at higher building densities. Both systems reduce or eliminate costs & price fluctuations of natural gas or other non-renewable heat sources.

Geoexchange works at a range of scales, from the household to the neighbourhood.

The City of Richmond has constructed its first city-owned district energy utility with a vertical geoexchange system. The first phase, developed in partnership with Oris Geo Energy Ltd., uses thermal energy from the ground to heat and cool new residential units currently being built in Richmond's West Cambie neighbourhood. It could cut local production of greenhouse gas emissions by 200 to 600 tonnes annually.

The first phase is expected to cost \$3.5 million to construct and \$80,000 to operate annually at full capacity. All of these costs will be recovered over time through user rates, and will place no burden on Richmond taxpayers who are not serviced by the utility.

Learn more:

richmond.ca/news/city/districtenergy.htm http://gibsons.ca/geoexchange-district-energy-utility

Horizontal geoexchange fields can take up a lot of space, so may be difficult to install in areas that are already developed and have mature trees. Existing home heating systems must also be compatible with the geoexchange heat pumps.

What Is Bioenergy?

207

Bioenergy describes the energy contained in biological material, such as wood, crops, manure and garbage.

BC has large natural biomass resources that can be used to produce energy at the individual level (eg. high-efficiency wood stoves), farm level (eg. biogas), or in district energy plants.

Biofuel sources

Bioethanol: Fermentation of starch crops **Biodiesel**:Vegetable oils and animal fats **Biogas**: Methane from anaerobic digestion of organic waste or syngas from wood.

Biomass sources

Forestry waste Construction wood waste Fuel crops, dried manure & stemwood Garbage Charcoal, Biochar

The difference between bioenergy and fossil fuels:

Burning bioenergy releases carbon that has been sequestered from the atmosphere, and therefore can be considered carbon neutral. In contrast, burning fossil fuels releases carbon that has been buried beneath the earth for millions of years, releasing additional carbon into the atmosphere.

What Is Bioenergy?

Case Studies

Baldy Hughes Therapeutic Community, near Prince George, BC

When the therapeutic community began operations at their current site, it soon became apparent that meeting their heating requirements with propane would be costly - both in monthly fuel costs and carbon taxes.

In response, the community pursued funding for installation of a community bioenergy heating system. This \$1.3 million project, replaced the propane boilers with a biomass system that uses wood pellets as fuel. The wood pellets are made from low-cost carbon-neutral wood by-products available in the area.

The system has exceeded their expectations reducing heating costs by 75%.

Dockside Green, Victoria, BC

A wood-fired combined heat and power plant will provide heat and hot water to the entire development. This, along with the hydropower-based electricity, will reduce the carbon footprint of the development.

Learn more:

seatoskygreenguide.ca

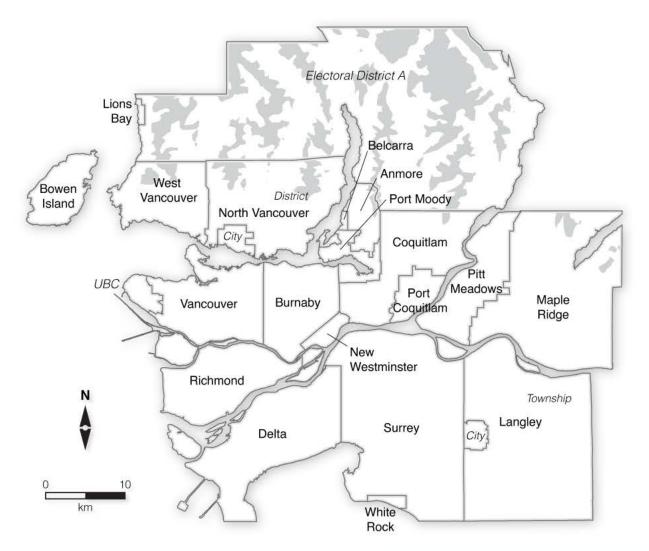
northerndevelopment.bc.ca/explore-our-region/success-stories/ baldy-hughes-invests-in-a-community-bioenergy-heating-system/ nexterra.ca/files/pdf/Project Profile_UBC 20120912_EMAIL.pdf

Costs per kilowatt hour range from: 9-13¢ for a biomass plant, 15-50¢ for biogas plant

Current natural gas prices are about 9¢ per kWh.

Metro Vancouver has very strict air quality standards, that must be met when installing a bioenergy plant. UBC's Nexterra bioenergy plant filters out virtually all particulate matter.

The fuel source must be free from contaminants, & be of consistent low moisture content, etc.



A medium-sized district energy plant is supplied by two trucks per day. This requires careful siting to avoid quiet residential streets.

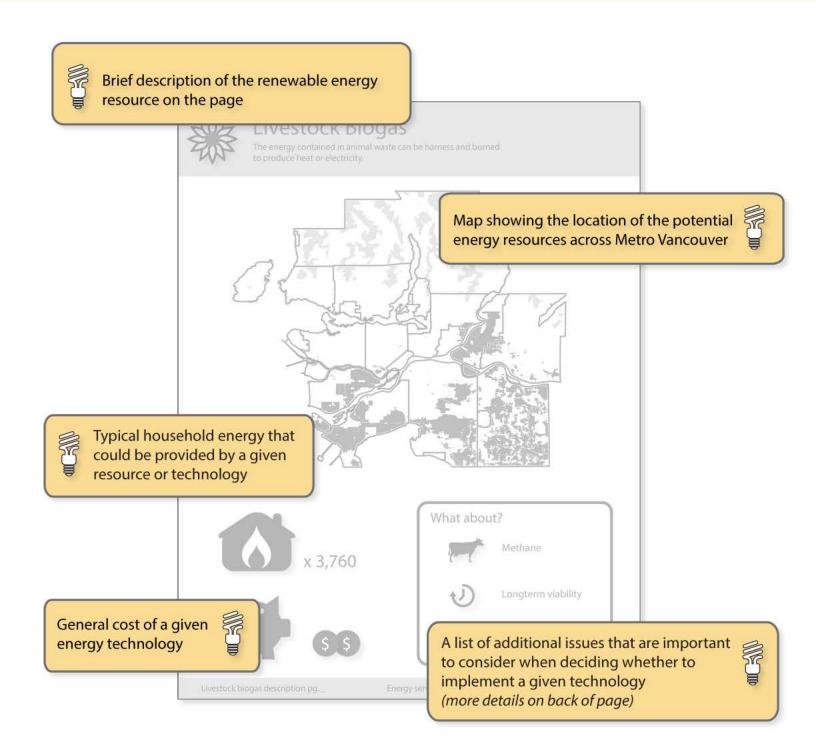
Section 3 - Regional Renewable Energy Resources

3.0

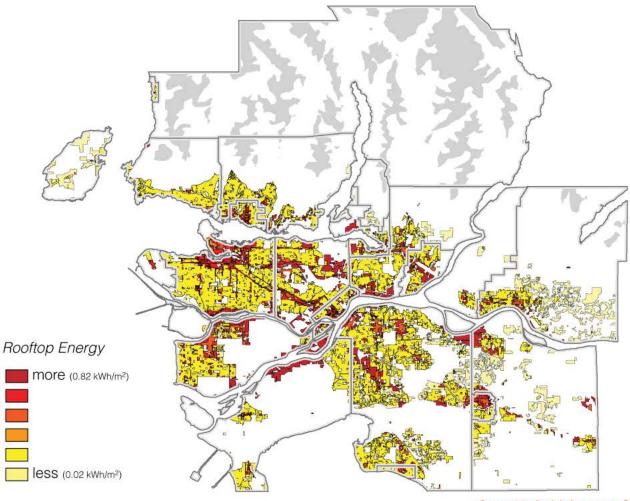
This chapter provides an inventory of the potential capacity of select renewable energy resources across the region, and describes issues arising from the associated technologies.

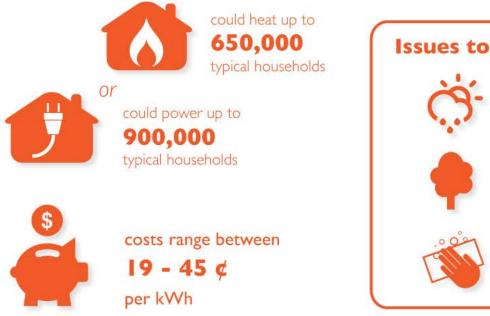
The region of Metro Vancouver comprises 22 municipalities, one electoral area, and one treaty First Nation.

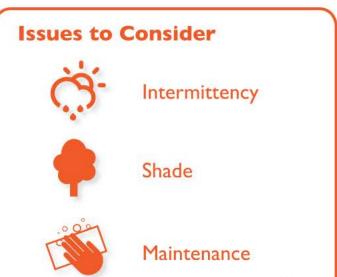
The resources inventoried in this section provide an overall snapshot of the physical potential for renewable energy generation in Metro Vancouver. They do not reflect constraints of economic viability, social acceptability or current regulations. Existing data from various sources are analyzed and mapped using new techniques suitable to communicating energy resources at the regional scale.



How To Use This Section


Outlined below is a general description of the layout of this chapter and how to think about the information.

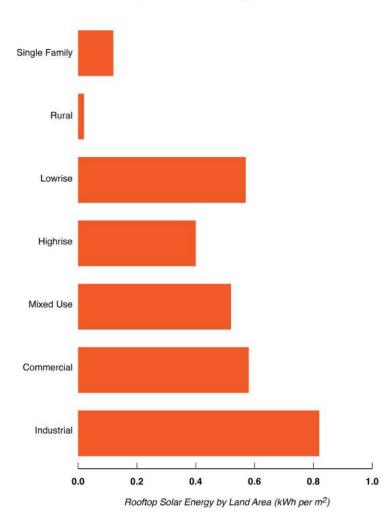



Rooftop Solar

Solar energy can be collected using panels to produce hot water or electricity. Here the energy on the south-facing (or flat) portion of exisiting roofs is assessed.

for municipality labels see page 3.0

see over


... More Information З.Іь

Source: University of British Columbia

Rooftop solar energy was assessed using the typical built form found in Land Use Classes across Metro Vancouver. The analysis considers roof shading, orientation and atmospheric effects.

South-Facing Rooftop Solar Energy by Land Use Type

Local Example

Vancouver Airport's **Solar Hot Water System**

In 2003, the Vancouver Airport installed 100 solar panels on the roof of the domestic terminal building. The system uses evacuated tube solar collectors to absorb solar energy and transfer the heat to water.

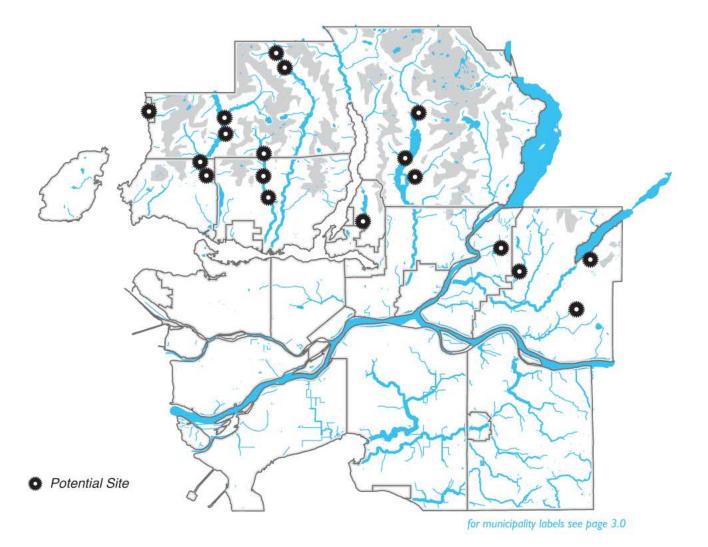
The panels heat over 3000 liters of water every hour, which has led to a 25% decrease of natural gas use in the terminal.

The cost of the project was about \$500,000 and the airport reports energy saving of more than \$100,000 a year. Furthermore, by reducing natural gas use, the airport has also managed to lower its carbon emissions.

The energy produced by a solar panel changes throughout the day and year depending on sun angles and cloud cover. This intermittency in energy output requires consideration of additional energy technologies to supply energy when the sun is not shining.

Shade from trees and buildings will affect the energy produced from a solar panel. To ensure the maximum energy output of a solar installation some jurisdictions in California have laws that prohibit shading of neighbouring solar panels.

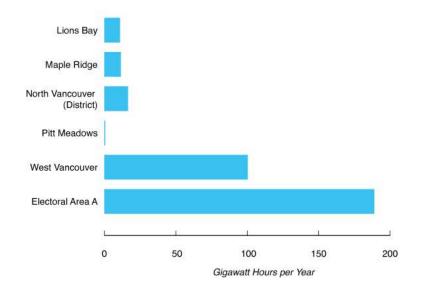
Maintenance


Solar panels require some maintenance for removing dust and snow. If the panels are not maintained, the energy output of the technologies can be reduced and economic viability can be compromised.

Run-of-River Hydro

Run-of-river technologies generate electricity by harnessing the energy from water flows in streams and rivers, without the use of large dams.

3.2


3.2_b ...More Information

Source: BC Hydro

Potential Run-of-River Hydro locations and electricity generation potential were gathered from the BC Hydro Resource Options Mapping (ROMAP) database

Potential Run-of-River Hydro Energy by Municipality

Local Example

Fitzsimmons Creek Run-of-River Project

The Run-of-River facility at Fitzsimmons Creek in Whistler began generating electricity in January 2011.

The Run-of-River project diverts water flow from the creek to run a turbine that produces electricity, before returning the water to the creek.

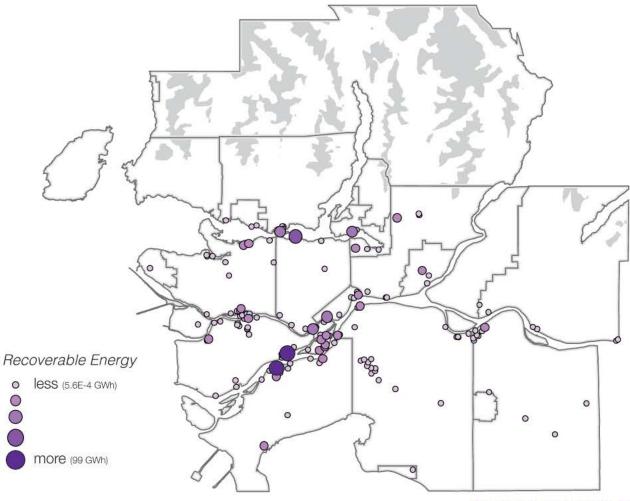
The project has the ability to produce over 33 GWh of energy per year, which is enough to power Whistler Blackcomb's summer and winter operations.

The length of stream where the project was installed is not a fish bearing area of the creek, and the weir was constructed to maintain minimum water levels.

Fish Bearing Streams

To minimze impacts on native fish populations, Run-of-River projects can be installed upstream of fish bearing reaches. The assessment of potential sites in Metro Vancouver accounts for known fish bearing streams.

Many of the potential run of river sites in Metro Vancouver are located in protected areas, designated as watersheds for drinking water or recreational areas; this raises key policy and public acceptance issues.


Recreation

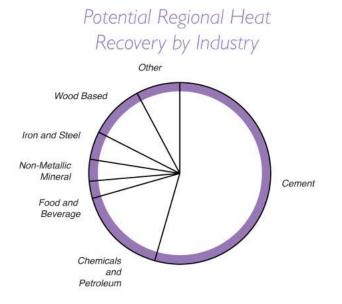
Many recreationists enjoy using creeks and rivers for activities such as kayaking, canoeing and fishing. However, there are opportunities for recreation and energy production to co-exist on the same stream. Various conditions are often negiotiated during project planning.

Industrial Energy Recovery

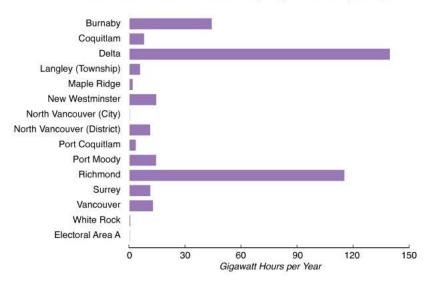
Energy generated during industrial processes can be captured and reused, or shared with nearby buildings.

for municipality labels see page 3.0

could heat up to 7,500 typical households



0


3.3_b ... More Information

Source: University of British Columbia

Industrial heat recovery was assessed using major gas consuming industries in Metro Vancouver and their associated NAICS class as a reference for published heat recovery factors.

Potential Heat Recovery by Municipality

Air Quality

Recovering waste heat has little to no air quality impacts. Converting waste to electricity requires burning, but modern technologies remove most of the pollutants before they enter the atmosphere.

The implementation of energy technologies that use waste heat or waste materials must consider potentially competing waste reduction initiatives that may limit the availability of waste fuels over long periods of time.

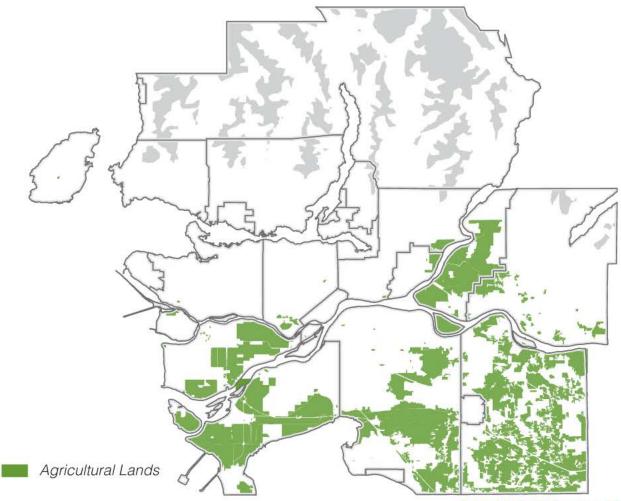
Metro Vancouver's Waste-to-Energy Facility

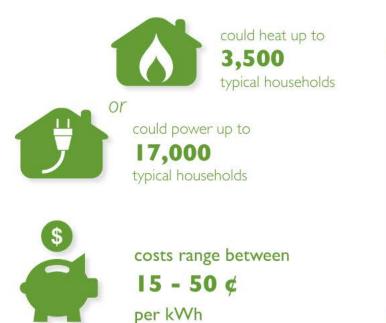
In 1988 Metro Vancouver installed a Waste-to-Energy Facility in Burnaby, BC. The facility takes 25% of the region's garbage (285,000 tonnes) and turns it into heat and electricity.

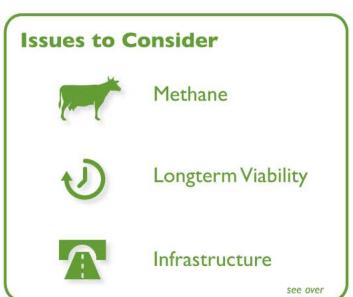
The energy provided from the facility generates enough energy to power 16,000 households.

Since the incoming garbage is burned to produce energy, its volume is reduced by more than 75%. Much of this waste can then be recycled or reused, resulting in a total of about 4% of the initial volume of garbage ending up in a landfill.

Note: Additional waste-to-energy facilities were not considered in the estimate of industrial recovery potential.

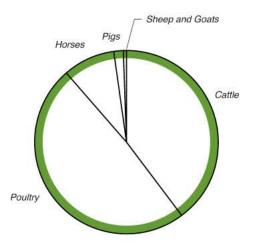

Delivering waste industrial heat to buildings requires the construction of new infrastructure such as underground pipes. Since heat dissipates quickly, the proximity of the buildings to the industrial heat source must also be considered.



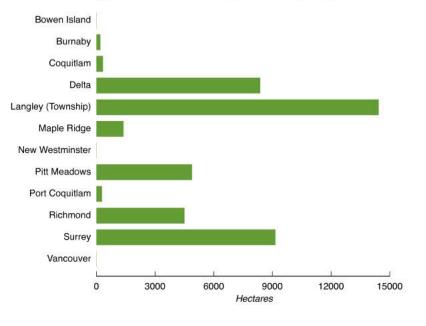

Livestock Biogas

The energy contained in animal waste can be harnessed and burned to produce heat or electricity.

3.4


3.4b

... More Information


Source: University of British Columbia

Livestock biogas energy was assessed using livestock headcounts from the Canadian Agricultural Census with published manure mass and methane recovery factors by livestock type.

Biogas by Livestock Type

Agriculture Land by Municipality

Livestock manure contains high amounts of methane, a greenhouse gas with over 20 times the warming potential of CO_2 . By capturing the methane from manure and burning it produce it energy, global warming impacts can be reduced, since the methane is converted to CO_2 before being released to the atmosphere.

The implementation of energy technologies that use animal waste must consider future changes to agricultural lands and livestock husbandry to ensure an adequate availability of manure fuels.

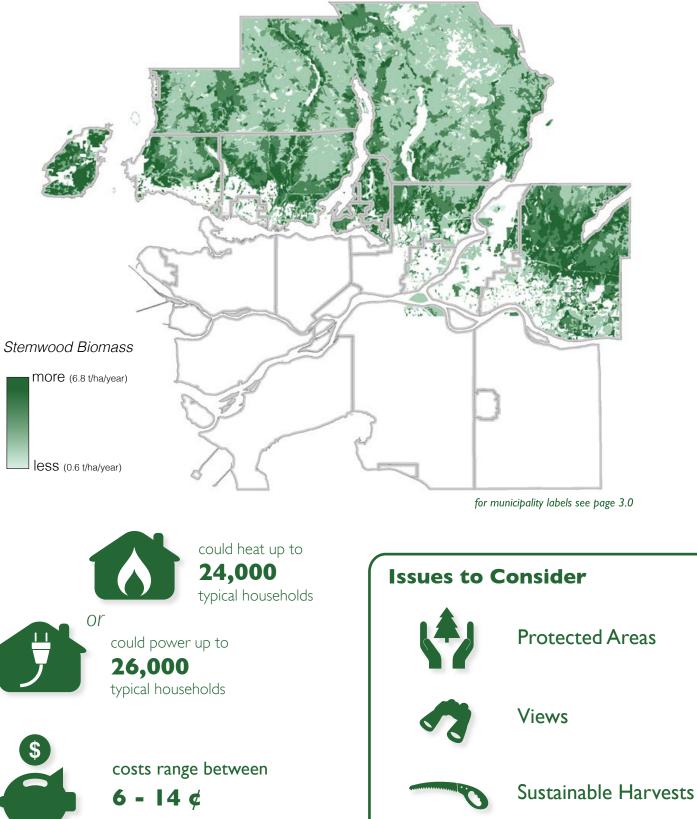
Local Example

Bakerview EcoDairy's Anaerobic Digester

In 2011 Bakerview EcoDairy in Abbotsford, BC installed a small-scale on-farm anaerobic digester that converts cow manure into electricity. The digester can generate 60,000 kWh of electricity per year, enough to power more than 5 typical house-holds in Metro Vancouver.

In addition to the electricity that the digester generates, the system also provides heat, fertilizer and cow bedding for use on the farm.

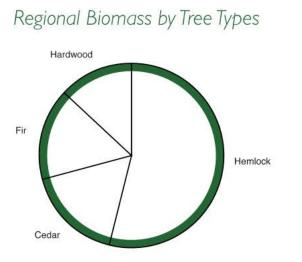
Further benefits of the digester include reductions of water pollution, odours and methane emissions (a potent greenhouse gas).


Infrastructure

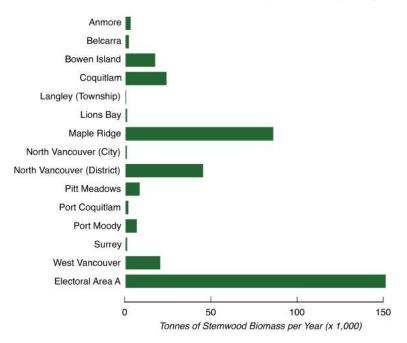
Generating and delivering gas and electricity from livestock wastes requires consideration of new transmission infrasstructure such as underground pipes and electric lines, as well as transportation of manure to the energy generating or processing facility.

Sustainable Forest Biomass

Sustainably harvested forest biomass can be used as a fuel for generating heat or electricity.


per kWh

see over


3.5 ... More Information

Source: University of British Columbia

Sustainable forest biomass was assessed using the FORECAST model. A selection harvest of stemwood on a 50 year rotation was selected to maintain the quality of the existing forests.

Potential Forest Biomass by Municipality

Much of the potential timber in Metro Vancouver is located in protected areas, designated as watersheds for drinking water or recreational areas. This raises key policy and public acceptance issues.

Harvesting trees to provide biomass energy resources could have an impact on the view of forests in Metro Vancouver. However, partial cutting techniques and good design can mimize these visual impacts.

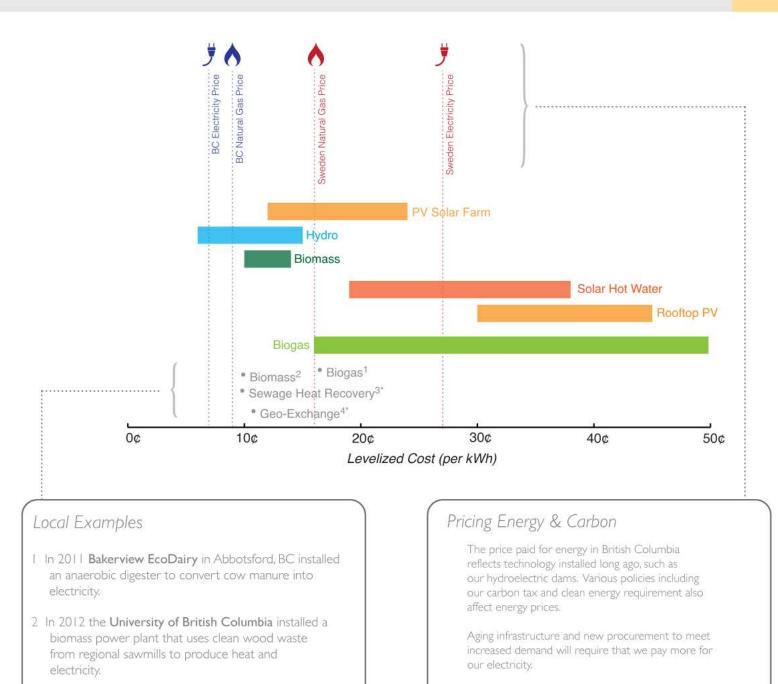
University of British Columbia's Biomass Power Plant

In 2012 the University of British Columbia installed a biomass power plant that uses waste wood from regional sawmills to produce heat and electricity.

The plant can produce enough electricity to power over 1,500 households. The heat from the plant is used to provide thermal energy to nearby buildings on the university campus, reducing UBC's natural gas consumption by 12%.

Other biomass sources used to run biomass plants could be gathered from park trimmings, fire fuel removal, wood wastes from logging activities, clean construction wastes and stemwood from fast-growing plantations.

Harvesting can be designed to maintain soil quality and carbon, local habitats and ecosystem services. The assessment of biomass here assumes selection harvesting of stemwood on a 50 year rotation, which could be coordinated with fire protection strategies.



Energy Costing

3.6

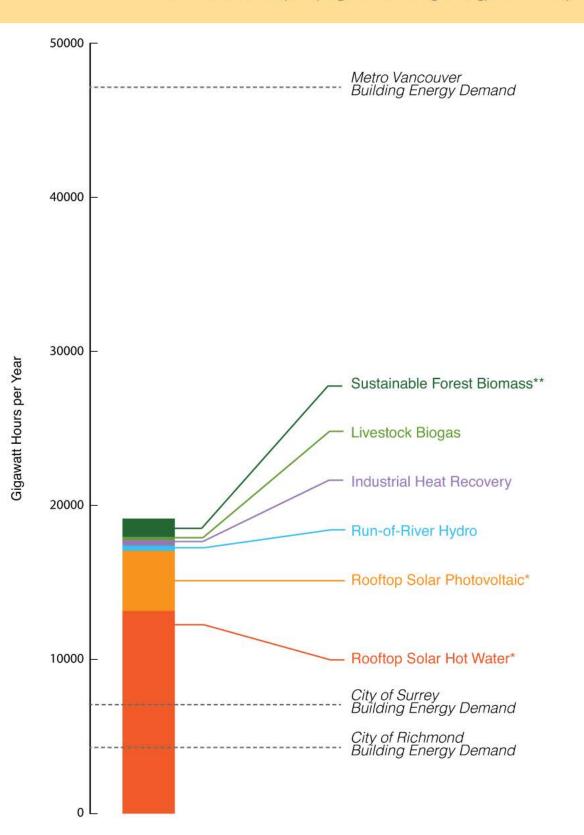
The Levelized Cost of Energy estimates technology lifetime costs including capital, labour and financing, relative to the total energy they will generate.

3* The South-East False Creek neighbourhood utility in Vancouver recovers heat from sewage, which is used to provide hot water to local residents.

4* The PCI Marine Gateway neighbourhood utility has been proposed to provide heating and cooling for residents of the Marine Gateway Development in Vancouver. The system will heat and cool buildings using a closed-loop geo-exchange system (with natural gas backup).

* Utility rate used as cost

Although natural gas prices are currently low in North America, they are likely to increase and adding a price to carbon emissions in order to account for the costs of global warming will impact gas prices.


British Columbia currently has a carbon tax of \$30 per ton. In comparison, Sweden, with a similar climate, hydroelectric infrastructure and biomass resource pays \$150 per ton.

Since Sweden implemented its carbon tax in 1991, carbon emissions have gone down but their economy has grown more than 50%.

Energy Resources Compared

З.6ь

The graph below compares the assessed sustainable energy resources in Metro Vancouver (bars) against building energy demand (lines)

* Rooftop solar assessment makes a simple assumption that of half of south facing roof space is used for photovoltaic and the other half for solar hat water

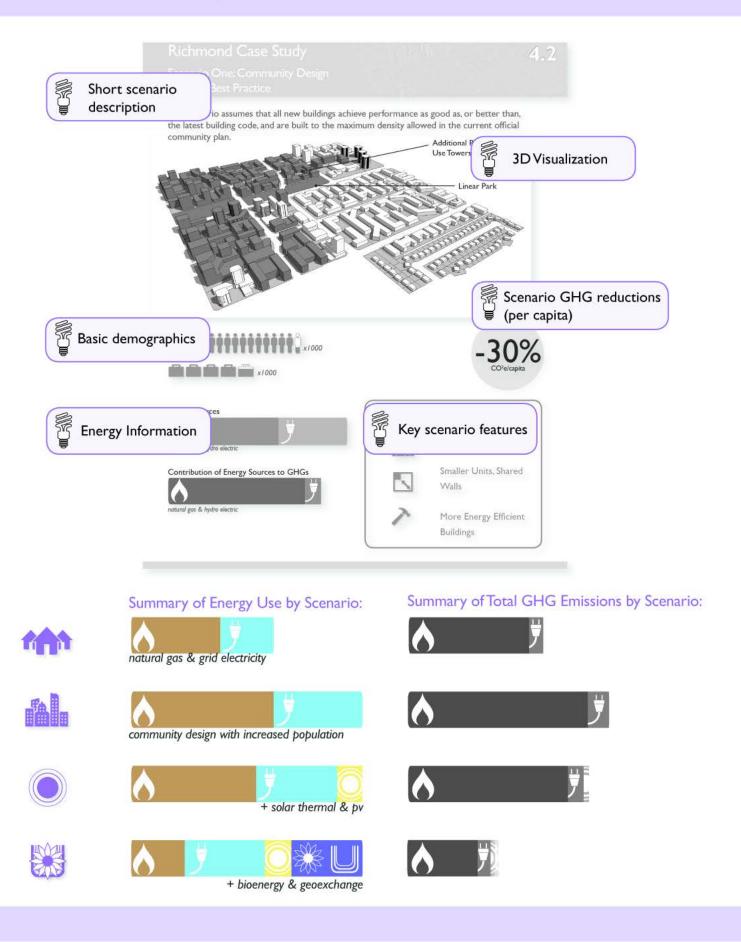
** Biomass potential considers heat energy. Electrical energy would be about 290 Gigawatt Hours per Year

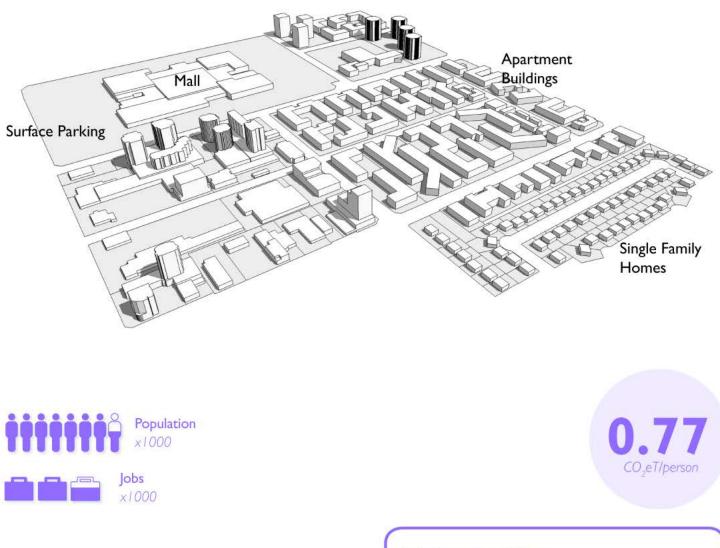
Section 4 - Urban Neighbourhood Energy Scenarios 4_{\circ}

Richmond Case Study

This Case Study explores some generic options for reducing energy consumption and greenhouse gas emissions in a neighbourhood redevelopment situation such as Lansdowne Mall in Richmond BC.

How can a city centre neighbourhood transition to a community that uses less energy and supplies most of its energy from local renewable sources?


Location of study site, Richmond, BC.


How to Use this Section

Outlined below is a general description of the layout of this chapter and how to explore the information.

Richmond Case Study

Existing Conditions

Energy Sources

Contribution of Energy Sources to GHGs

4. [b Richmond Case Study

Current Conditions

This neighbourhood is centred around an existing mall with large surface parking lots. Residential density is relatively low for an urban neighbourhood, and existing buildings are not energy efficient.

Total Residential Energy Consumption

Total Residential Greenhouse Gas Emissions

Existing Conditions:

Extensive Surface Parking

Large surface parking lots do not provide any energy benefits and contribute to heating the neighbourhood in the summer.

Low Density

The area has low residential density compared to other urban areas in Richmond.

Many Buildings with Low Energy

Efficiency

Many buildings are older with less insulation, lower efficiency furnaces and windows.

Richmond Case Study

Scenario 1: Community Design Current Best Practice

This scenario assumes that all new buildings achieve performance equal to the latest building code, and are built to the maximum density allowed in the current official community plan.

4.2b Richmond Case Study

Total Residential Energy Consumption

96,000GJ/yr

Total Residential Greenhouse Gas Emissions

256,000 GJ/yr

8.800 tonnes CO₂e

160,000 GJ/yr

Scenario I: Community Design

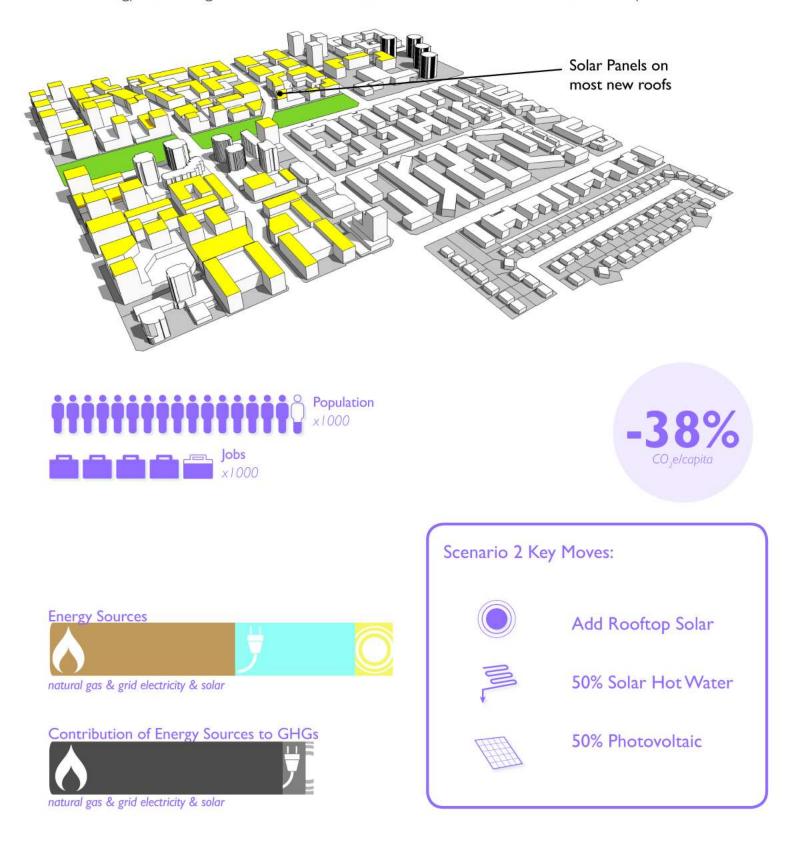
This neighbourhood develops to become compact and complete, with extensive mid-rise mixed use buildings complemented by a new large park. More jobs locate within the neighbourhood, and it is more walkable for residents. All of these changes greatly reduce per capita carbon emissions.

Scenario I Key Moves:

Add Buildings

Smaller units, shared walls

New units are in highrise buildings and are smaller on average than current units in the study area.


More efficient buildings

New buildings achieve more energy efficient building standards, such as ASHRAE 90.1

Richmond Case Study

Scenario 2: Building-level Renewables

This scenario shows the opportunity for individual buildings to supply renewable energy. Solar energy technologies were selected because of the amount of available roof space.

4.3b Richmond Case Study

Scenario 2: Building-level Renewables

Solar panels can be integrated with the design of new buildings to reduce visual impact from ground-level and minimize shading from nearby buildings. Using solar energy further reduces per capita carbon emissions.

Scenario 2 Key Moves:

Rooftop Solar

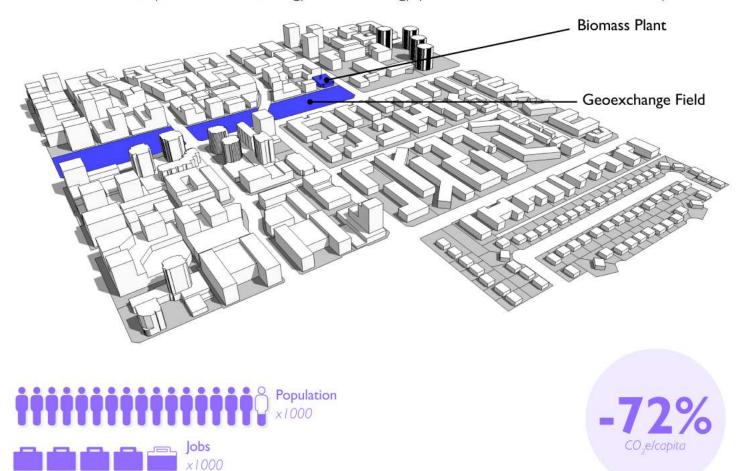
Solar panels cover 90% of all new roofs, which is 25% of the roof space of the study area

50% Solar Hot Water

Solar thermal produces 18,000 gigajoules per year

50% Photovoltaic

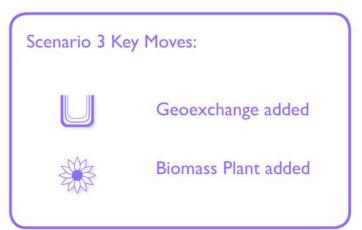
Solar photovoltaic produces 4,600 gigajoules per year


Total Residential Energy Consumption

Richmond Case Study

Scenario 3: Shared Energy

This scenario shows the opportunity for community renewable energy systems. Geoexchange locates in the linear park, and a bioenergy district energy plant locates within the community.



natural gas & grid electricity & solar & bioenergy & geoexchange

Contribution of Energy Sources to GHGs

natural gas & grid electricity & solar & bioenergy & geoexchange

A.A.B. Richmond Case Study

Scenario 3: Community Options

Geoexchange is located underground and out of sight in the linear park. A bioenergy plant is located within the community on a major street for access and can be integrated with surrounding building design. This scenario greatly reduces per capita and total carbon emissions.

0.21 CO2eT/person

Total Residential Energy Consumption

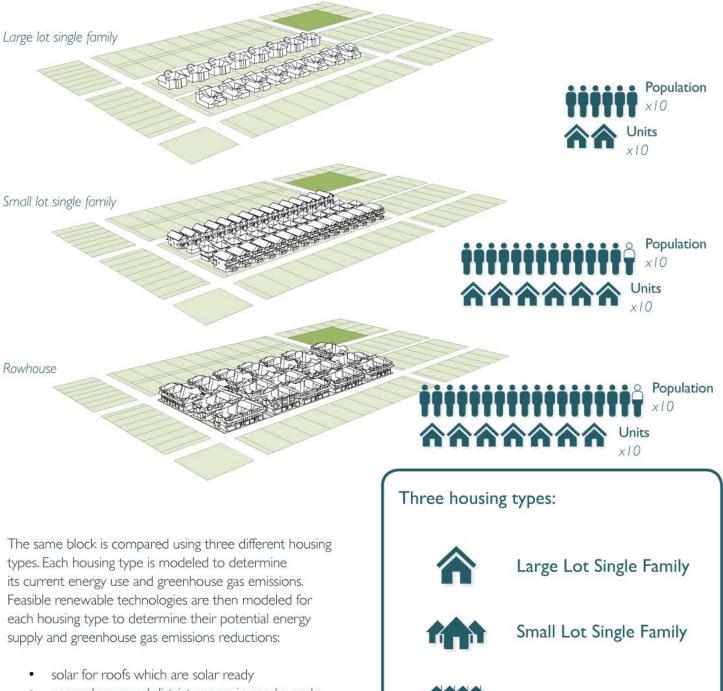
Total Residential Greenhouse Gas Emissions

Scenario 3 Key Moves:

Geoexchange

The geoexchange provides 76,000 GJ of energy per year, half of which goes to residential uses.

Biomass Plant

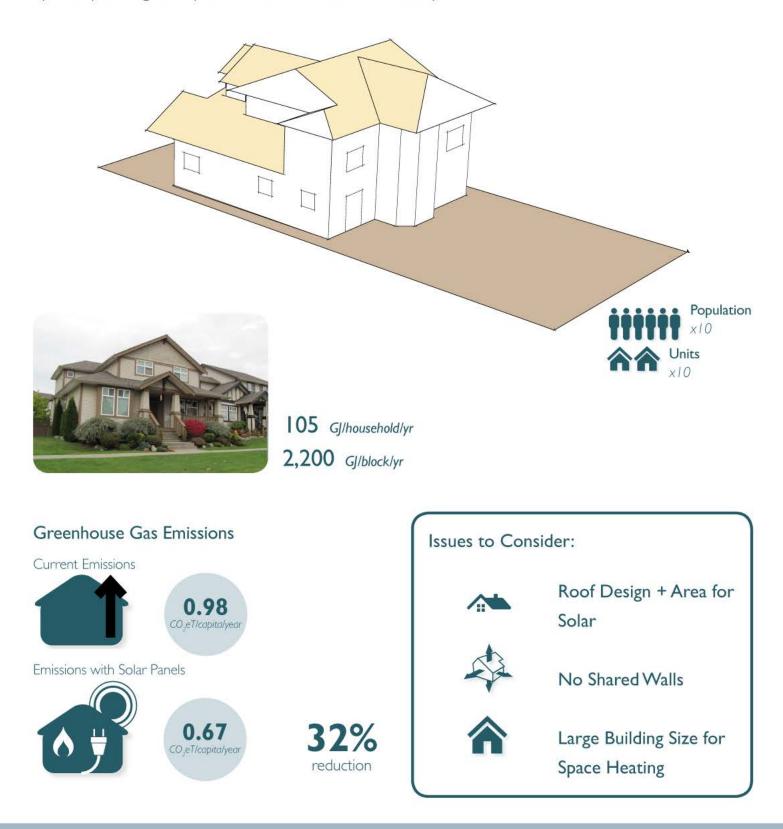

The biomass plant provides 85000 GJ of energy per year, half of which goes to residential uses

Section 5 - Suburban Block Energy Scenarios

Surrey Case Study

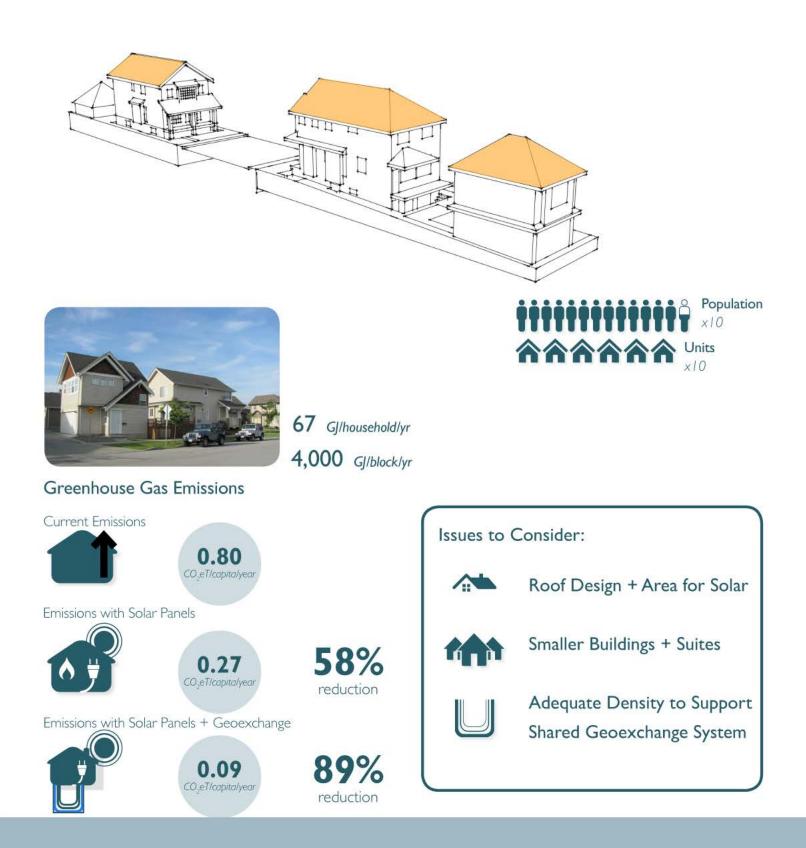
This case study explores reducing energy consumption and greenhouse gas emissions using different community designs and addition of renewable energy resources for a residential block in Surrey BC.

Housing Types

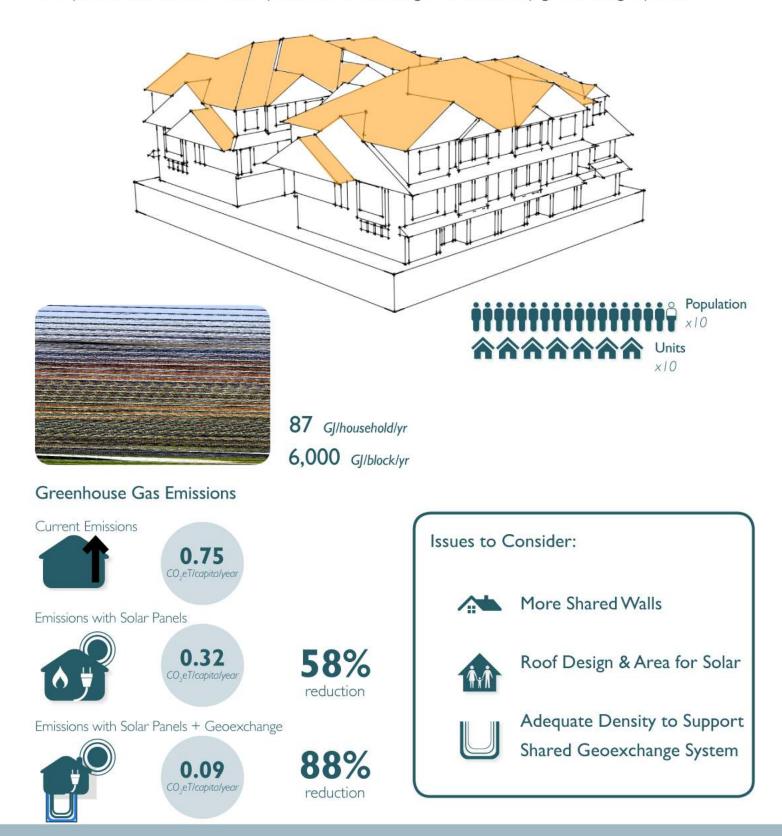


Rowhouse

 geoexchange and district energy in nearby parks or rights-of-way.



A typical large lot single family home in Surrey could reduce its reliance on external energy sources by incorporating solar photovoltaic and solar hot water panels.



A typical small lot single family home could reduce its reliance on external energy sources by incorporating solar photovoltaic and hot water panels and a community geoexchange system.

A typical rowhouse in Surrey could reduce its reliance on external energy sources by incorporating solar photovoltaic and hot water panels and connecting to a community geoexchange system.

Surrey Case Study Housing types compared

Housing Type	Energy Supply	Greenhouse Gas Emissions
Large lot single family	A y	0.98 tonnes CO ₂ e/capita/year
		32% reduction 40.2 tonnes CO ² e/block/year
Small lot single family		
block population 135	♦	0.80 tonnes CO ₂ e/capita/year
		58% reduction
	J O U	89% reduction
Rowhouse	()	0.75 tonnes CO ₂ e/capita/year
		58% reduction
block population 175	U J O	88% reduction 15.8 tonnes CO ² e/block/year

These scenarios show that:

- Large lot single family homes are much less energy efficient than smaller homes and higher density neighbourhoods.
- Per capita carbon emissions are lowest with rowhouse designs
- Solar energy can substantially reduce carbon emissions with all building types,
- Shared energy systems such as geoexchange can almost eliminate carbon emissions (both per capita and total) with higher density community designs, sufficient to meet BC's community-wide GHG emission reduction targets.

Where does the guide go next?

If the possibilities visualized here for community energy are to be realized, co-operation between various levels of government, citizens and businesses will be required. Important issues such as the economics of renewable energy installation and home retrofitting, and the feasibility of developing local energy resources, need more analysis and policy development. The next version of the Guide will address some of these issues, as well as other renewable energy sources not yet covered. It will also go online to become more accessible and interactive, as the **iWISE** (interactive Web-Interface for Sustainability Energy) project. This will give municipalities, neighbourhoods, and citizens more visual learning tools with which to explore, animate and query regional energy information, as well as more visualization examples for practitioners to use in community engagement and planning on energy projects.

Links and Resources:

General website resources:

- Community Energy Association | http://www.communityenergy.bc.ca
- Livesmart BC | http://www.livesmartbc.ca
- Fraser Basin Council | http://www.fraserbasin.bc.ca/spc_home.html
- Climate Action Secretariat (CEEI) | http://www.env.gov.bc.ca/cas/mitigation/ceei/
- BC Hydro | http://www.bchydro.com/powersmart/local_government_district.html
- Collaborative for Advanced Landscape Planning (CALP) | http://calp.forestry.ubc.ca/
- ElementsDB | http://elementsdb.sala.ubc.ca/

Community energy references:

- The Rough Guide to Community Energy. Clark, D. & M. Chadwick (2011) Rough Guides Ltd., UK. http://www.roughguide.to/communityenergy/
- Sustainable Energy Without the Hot Air. MacKay, D.J.C. (2009) UIT Cambridge, UK. http://www.inference.phy.cam.ac.uk/sustainable/book/tex/cft.pdfv

Community engagement references:

- Having the Climate Conversation. ICLEI (2012) Canada
 http://www.icleicanada.org/programs/adaptation/item/4-having-the-climate-conversation
- Local Climate Change Visioning and Landscape Visualizations: Guidance Manual. (Pond, E., et al. 2010) UBC http://calp.forestry.ubc.ca/viz-guidance-manual/
- Visualizing Climate Change: A Guide to Visual Communication of Climate Change and Developing Local Solutions. Sheppard, S.R.J. (2012) Routledge, UK.

http://www.routledge.com/books/details/9781844078202/

What should I know about community energy?

This Guide has tried to explain what Community Energy means, what it looks like, and why we should care about it, including:

- its importance in reducing our dependency on fossil fuel supplies that contribute to global warming
- improving local energy security and reducing longterm energy costs
- enhancing quality of life
- meeting adopted municipal sustainability targets
- sharing the responsibilities of energy production, benefits and costs locally

Every community in BC needs to do its share if we are to transition to a safer, more sustainable future.

What can I do in my community?

- Use the Guide and its compelling graphics to help build energy literacy among your own family, friends, and neighbours. Talk about what it might mean to your neighbourhood if you worked together (see the Eagle Island story on page 2.2b).
- Get involved in the urgent decisions to be made on local energy issues that will affect you and your kids. Take part in an informed dialogue within neighbourhood, municipal, and regional planning processes.
- Give us feedback on the guide:

Email: Rory Tooke, Project Manager | trtooke@alumni.ubc.ca

Web: Guide Blog | www.guidetocommunityenergy.com

Clean Technologies

A wide range of technologies are available to produce energy or to help reduce its use.

GENERATION

SOLAR **Concentrating Solar Thermal** * Photovoltaic ★☆ Domestic Hot Water

- **HYDRO** Storage Hydro Run-of-River Hydro Pico Hydro
- BIOMASS Timber Crop Manure

WASTE Tindustrial Recovery Waste-to-Energy Sewage Heat Recovery

> GEOTHERMAL Natural Convection Systems **Enhanced Geothermal Systems**

ACTIVE HEAT TRANSFER ☆ Ground-Source Air-Source Water-Source

> WIND Turbine

OCEAN Tidal Wave Current Thermal Osmotic

NUCLEAR

CONSERVATION

BUILDING MATERIALS Insulation Windows Ventilation

ENERGY DEVICES Compact Fluorescent Lighting Programmable Thermostats Energy Efficient Appliances

DESIGN Passivhaus Shared Walls Shade Trees

BEHAVIOUR

Assessed for the region in chapter 3

 \checkmark Assessed for case studies in chapters 3 & 4

Joule (J)- is a derived unit of energy, work, or amount of heat in the International System of Units. The other popular unit of power is the "horsepower". The conversion is that one horsepower = 756 Watts. A 100-HP car would be able to turn a 75,600 - Watt electrical generator, or 75.6 kilowatts.

Gigajoule (GJ)- is a metric term used for measuring energy use. It is equal to one billion (109) joules. Six gigajoules is about the amount of potential chemical energy in a barrel of oil, when combusted.

Watt- is a derived unit of power in the International System of Units, named after the Scottish engineer James Watt. The unit, defined as one joule per second, measures the rate of energy conversion or transfer.

Kilowatt hours (kWh)- a unit of energy equal to the work done by a power of 1000 watts operating for one hour.

Megawatt hour (Mwh)- A megawatt is a unit for measuring power that is equivalent to one million watts. A megawatt hour is equal to 1,000 Kilowatt hours (Kwh). It is equal to 1,000 kilowatts of electricity used continuously for one hour.

EV Charging Station- The facility that provides battery charging for EVs (electric vehicles). Many new installations provide electricity from wind and solar sources.

Greenhouse Gas (GHG)- is a gas in the Earth's atmosphere that absorbs and emits radiation within the thermal infrared range. This process is the fundamental cause of the greenhouse effect. The primary greenhouse gases in the Earth's atmosphere are water vapour, carbon dioxide, methane, nitrous oxide, and ozone.

Greenhouse Effect- A popular term used to describe the heating effect due to the trapping of long wave (length) radiation by greenhouse gases produced from natural and human sources.

Carbon Dioxide Equivalent $(CO_2 e)$ - a measure for describing how much global warming a given type and amount of greenhouse gas may cause, using the functionally equivalent amount or concentration of carbon dioxide (CO2) as the reference.

Conversions: I J = 0.0003 Wh I Wh = 3600 J

Sources

lcons

Jens Windolf, from The Noun Project Blake Thompson, from The Noun Project Martha Ormiston, from The Noun Project Iconathon, from The Noun Project Olivier Guin, from The Noun Project Nathan Thompson, from The Noun Project Hakan Yalcin, from The Noun Project The Noun Project Chang Kim, from The Noun Project Remy Medard, from The Noun Project Marc Serre, from The Noun Project John Caserta, from The Noun Project Shane Miller, from The Noun Project Jens Tarning, from The Noun Project Jon Testa, from The Noun Project Sime Gevende, from The Noun Project Dmitry Baranovskuy, from The Noun Project Sergey Krivoy, from The Noun Project Chang Kim, from The Noun Project Tag Team Studio, from The Noun Project Lemon Liu, from The Noun Project Simon Child, from The Noun Project Ashley Reinke, from The Noun Project Brock Kenzler, from The Noun Project Donata Bologna, from The Noun Project Stirling Tschan, from The Noun Project Richard de Vos, from The Noun Project Mallory Hawes, from The Noun Project iconoci, from The Noun Project The Noun Project Valentina Piccione, from The Noun Project Simon Child, from The Noun Project Stephen West, from The Noun Project Adam Whitcroft, from The Noun Project Luis Prado, from The Noun Project Dmitry Baranovskiy, from The Noun Project Alessandro Suraci, from The Noun Project William Hollowell, from The Noun Project Faith, Hope & Love Creative, from The Noun Project Jens Tärning, from The Noun Project

Images Chapter One: Lukas Holy, Sara Barron, Carbon Visuals, Rory Tooke

Chapter Two:

Lukas Holy, Rory Tooke, Design Centre for Sustainability, CALP REIBC team (Ellen Pond, Duncan Cavens, Nicole Miller, Stephen Sheppard), Stephen Sheppard, David Flanders, David Suzuki Foundation, Google Street View, Natural Resources Canada, Green Muze, Turtle Island, City of Richmond, City of Gibsons, Northern Development BC, John Newcom

Chapter Three: Rory Tooke, David Dodge: Green Energy Futures

Chapter Four: Kevin Jingyi Zhang, Sara Barron, Lukas Holy

Chapter Five: Mesa Sherriff, Sara Barron, City of Surrey